
Int. J. Advanced Networking and Applications

Volume: 07 Issue: 01 Pages: 2630-2635 (2015) ISSN: 0975-0290

2630

Distributed Computing: An Overview
Md. Firoj Ali

Department of Computer Science, Aligarh Muslim University, Aligarh-02

Email: firojali.mca@gmail.com

Rafiqul Zaman Khan

Department of Computer Science, Aligarh Muslim University, Aligarh-02

Email: rzk32@yahoo.co.in

--ABSTRACT--

Decrease in hardware costs and advances in computer networking technologies have led to increased interest in

the use of large-scale parallel and distributed computing systems. Distributed computing systems offer the

potential for improved performance and resource sharing. In this paper we have made an overview on

distributed computing. In this paper we studied the difference between parallel and distributed computing,

terminologies used in distributed computing, task allocation in distributed computing and performance

parameters in distributed computing system, parallel distributed algorithm models, and advantages of

distributed computing and scope of distributed computing.

Keywords – Distributed computing, execution time, heterogeneity, shared memory, throughput.

-- -------------------------

Date of Submission: April 18, 2015 Date of Acceptance: June 08, 2015

-- -------------------------

1. Introduction

Distributed computing refers to two or more

computers networked together sharing the same

computing work. The objective of distributed computing is

to sharing the job between multiple computers.

Distributed network is mainly heterogeneous in nature in

the sense that the processing nodes, network topology,

communication medium, operating system etc. may be

different in different network which are widely distributed

over the globe [1, 2]. Presently several hundred computers

are connected to build the distributed computing system

[3, 4, 5, 6, 7, 8]. In order to get the maximum efficiency of

a system the overall work load has to be distributed among

the nodes over the network. So the issue of load balancing

became popular due to the existence of distributed

memory multiprocessor computing systems [3, 9]. In the

network there will be some fast computing nodes and slow

computing nodes. If we do not account the processing

speed and communication speed (bandwidth), the

performance of the overall system will be restricted by the

slowest running node in the network [2, 3, 4, 5, 6, 7]. Thus

load balancing strategies balance the loads across the

nodes by preventing the nodes to be idle and the other

nodes to be overwhelmed. Furthermore, load balancing

strategies removes the idleness of any node at run time.

A distributed system can be categorized as a group of

mostly autonomous nodes communicating over a

communication network and having the following features

[10]:

1.1 No Common Physical Clock

This plays an important role to introduce the element of

“distribution” in a system and takes the responsibility to

provide inherent asynchrony amongst the processors. In

distributed network the nodes do not share common

physical clock [10].

1.2 No Shared Memory

This is an important aspect of for message-passing

communication among the nodes present in a network.

There is no common physical clock concept in this

memory architecture. But it is still possible to provide the

abstraction of a common address space via the distributed

shared memory abstraction [10, 11].

1.3 Geographical Separation
In distributed computing system the processors are

geographically distributed even over the globe. However,

it is not essential for the processors to be present on a

wide-area network (WAN). It is possible to make a

network/cluster of workstations (NOW/COW) present on

a LAN can be considered as a small distributed system

[10, 12]. Due to the low-cost high-speed off-the-shelf

processor’s availability NOW configuration becomes
popular. The Google search engine is built on the NOW

architecture.

1.4 Autonomy and Heterogeneity

The processors are autonomous in nature because they

have independent memories, different configurations and

are usually not part of a dedicated system connected

through any network, but cooperate with one another by

offering services or solving a problem together[10, 12].

2. Differences between Parallel and Distributed

Computing
There are many similarities between parallel and

distributed computing but there are some differences also

exist that are very important in respect of computing, cost

and time. Parallel computing actually subdivides an

application into small enough tasks that can be executed at

the concurrently while distributed computing divides an

application into tasks that can be executed at different sites

using the available networks connected together. In

parallel computing multiple processing elements exist

within one machine in which every processing element

being dedicated to the overall system at the same time. But

in distributed computing a group of separate nodes

Int. J. Advanced Networking and Applications

Volume: 07 Issue: 01 Pages: 2630-2635 (2015) ISSN: 0975-0290

2631

possibly different in nature that each one contributes

processing cycles to the overall system over a network.

 Parallel computing needs expensive parallel hardware

to coordinate many processors within the same machine

but distributed computing uses already available

individual machines which are cheap enough in today’s
market.

3. Terminologies Used in Distributed Computing
There are some basic terms used in distributed

computing and ideas that will be defined first to

understand the concept of distributed computing.

3.1 Job

A job is defined as the overall computing entity that’s
need to be executed to solve the problem at hand [11].

There are different types of jobs depending upon the

nature of computation or algorithm itself. Some jobs are

completely parallel in nature and some are partially

parallel. Completely parallel jobs are known as

embarrassingly parallel problem. In embarrassingly

parallel problem communication among different entities

is minimum but in case of partially parallel problem

communication becomes high due to the communication

among different processes running on different nodes to

finish the job.

3.2 Granularity
Simply the size of tasks is expressed as

the granularity of parallelism. The grain size of a parallel

instruction is a measure of how much work each processor

does compared to an elementary instruction execution time

[11]. It is equal to the number of serial instructions done

within a task by one processor. There are mainly three

types of grain size exists: fine, medium and coarse grain.

3.3 Node

A node is an entity that is capable of executing the

computing tasks. In traditional parallel system this refers

mostly to a physical processor unit within the computer

system. But in distributed computing a computer is

generally considered as a computing node in a network

[11]. But in reality trends have been changed. A computer

may have more than one core like dual core or multi core

processors. Both the terms node and processor have been

used interchangeably in this literature.

3.4 Task
A task is a logically discrete part of the overall

processing job. Each task is distributed over different

processors or nodes connected through a network to work

on each task to complete the job at the aim of minimized

task idle time. In the literature, tasks are sometimes

referred to as jobs and vice-versa [11].

3.5 Topology

The way of arranging the nodes in a network or the

geometrical structure of a network is known as topology.

Network topology is the most important part of the

distributed computing. Actually topology defines how the

nodes will contribute their computational power towards

the tasks [11, 15].

3.6 Overheads

Overheads measure the frequency of communication

among processors during execution. During the execution,

processors communicate to each other for the completion

of the job as early as possible, so obviously

communication overheads take place. There are three

types of overheads mainly bandwidth, latency and

response time [11]. First two are mostly influenced by the

network underlying the distributed computer system and

the last one is the administrative time taken for the system

to respond.

3.7 Bandwidth

It measures the amount of data that can be transferred

over a communication channel in a finite period of time

[11].It always plays a critical role for the system

efficiency. Bandwidth is a crucial factor especially in case

of fine grain problem where more communication takes

place. The bandwidth is often far more critical than the

speed of the processing nodes. The slow data rate

obviously will restrict the speed of the processor and

ultimately will cause poor performance efficiency.

3.8 Latency

It refers to the interval between an action being initiated

and the action actually having some effect [11]. Latency

specifies different meanings in different situations.

Latency is the time between the data being sent and the

data actually being received in case of underlying network

called network latency. In case of task, latency is the time

between a task being submitted to a node and the node

actually begins the execution of the task called response

time. Network latency is closely related with the

bandwidth of the underlying network and both are critical

to the performance of a distributed computing system.

Response time and the network latency together are often

called parallel overhead.

4. Performance Parameters in Distributed

Computing
There are many performance parameters which are

mostly used for measuring parallel computing

performance. Some of them are listed as follows:

4.1 Execution Time

Execution time is defined as the time taken to complete

an application after submission to a machine till finish.

When the application is submitted to a serial computer, the

execution time is called serial execution time and denoted

by TS and when application is submitted to a parallel

computer, the execution time is called parallel execution

time and denoted by TP.

4.2 Throughput

It is defined as the number of jobs completed per unit

time [11]. Throughput depends on the size of jobs.

Throughput may be one process per hour for large process

Int. J. Advanced Networking and Applications

Volume: 07 Issue: 01 Pages: 2630-2635 (2015) ISSN: 0975-0290

2632

while it may be twenty processes per seconds for small

processes. It is fully dependent on the underlying

architecture and the size of the running processes on that

architecture.

4.3 Speed Up

Speed up of a parallel algorithm is the ratio of execution

time when the algorithm is executed sequentially to the

execution time when the same algorithm is executed by

more than one processor in parallel. Speed up [11, 14] can

be mathematically represented as: Sp=Ts/Tp, where Ts is the

sequential execution time, Tp is the parallel execution time.

In ideal situation, the speed up is equal to the number of

processor in parallel but it is always less than the ideal one

because the other important factors in a cluster like

communication delay, memory access delay reduces the

speed up.

4.4 Efficiency

It is the measure of the contribution by the processors to

an algorithm in parallel. Efficiency [11, 14] can be

measured as Ep= Sp/p (0>Ep<1) where Sp is the speed up

and p is the number of processors in parallel. The Value of

Ep is closure to 1 indicates an efficient algorithm.

4.5 System Utilization
This is a very important parameter. System utilization

measures the involvement of resources present in a

system. It may fluctuate between zero to 100 percent [11,

14].

4.6 Turnaround Time
It is defined as the time elapsed by the job from its

submission to completion. Turnaround time is the

summation of the time to get into memory, waiting in

ready queue, executing on the processor and spending time

for input/output operations [11, 14].

4.7 Waiting Time

I tis the total time spent by a processor waiting in ready

queue for getting a resource. In other words, waiting time

is the duration waited by a process to get the resource

attention. Waiting time depends upon the parameters

similar as turnaround time [11, 14, 15].

4.8 Response Time

Time between submission of requests and first response

to the request is known as response time. This time can be

restricted by the output devices of computing system [11,

14, 15].

4.9 Overheads

The overheads offered by a parallel program are

expressed by a single function known as overhead

function [11, 14, 15]. We denote the overhead function of

a parallel system by the symbol To. The total over heads in

solving a problem summed over all processing elements is

pTP. Therefore, the overhead function (To) is given by (1)

where TS time is free from overhead.

:To = pTP– TS (1)

4.10 Reliability
Reliability ensures operations without fail under any

specified conditions for a definite period of time [11, 14,

15].

5. Parallel Distributed Algorithm Models
In this section we have stated parallel distributed

algorithm models. An algorithm model is classically a

method of forming a parallel algorithm by picking proper

decomposition and mapping technique and applying the

appropriate strategy to minimize overheads [11, 14, 15].

5.1 The Data-Parallel Model

The data-parallel model is shown in Fig. 1 [11]. This is

a simplest algorithm model. In this model, the tasks are

generally statically mapped onto computing elements and

each task does the similar operations on different data

[16]. Data parallelism occurs as the processors operate

similar operations but the operations may be executed in

phases having different data. Uniform partitioning

technique and static mapping are followed for load

balancing as the processors operate on same [11, 14, 15].

Data-parallel algorithms [17, 18] follow either shared-

address-space or message passing paradigms technique.

However, message passing offers better performance for

partitioned address space memory structure. Overheads

can be minimized in the data-parallel model by selecting a

locality preserving [17, 18]. The most attracting feature of

data-parallel problems is that the degree of data

parallelism grows with the size of the problem and can be

effectively solve by adding more number of processors.

Figure 1 data parallel model

5.2 The Task Graph Model

Task dependency graph is an important way of

representing the computations in any parallel algorithm

[11, 14, 15].The task-dependency graph has two varieties:

trivial and nontrivial. However, task dependency graph is

also used in mapping of tasks on to the processors. This

model is useful for solving problems which has the

volume of data associated with the tasks islarge in

comparison to the amount of computation associated with

them. Generally, static mapping technique is used to

Int. J. Advanced Networking and Applications

Volume: 07 Issue: 01 Pages: 2630-2635 (2015) ISSN: 0975-0290

2633

optimize the cost of data movement among tasks. Even a

decentralized dynamic mapping uses the information

about the task-dependency graph structure for minimizing

interaction overhead [11, 14, 15].

5.3 The Work Pool Model

In this model the tasks may be assigned to any

processor by a dynamic mapping technique for load

balancing either by centralized or decentralized fashion

[11, 14, 15].This model does not follow any pre-mapping

scheme. The work already may be statically available

before computation orcan be created dynamically.

Whatever the process available or generated will be added

to the global (possibly distributed) work pool. It is

necessary to use termination detection algorithm for

notifying the other processes to understand the completion

of entire work when dynamic and decentralized mapping

is used so that the processor can stop finding more jobs

[11, 14, 15].

5.4 The Master-Slave Model
In this model generally one node is specially designated

called master node and other nodes are called worker or

slave nodes [15, 19, 20]. Simply master node generates the

work and distributes the works to the worker nodes. This

model does not have any absolute way of mapping and

whatever work has been assigned to any worker will have

to complete. The worker nodes do the necessary

computations and the master node collects that result. The

master node may allocate tasks to the worker nodes

depending on the priori information about the worker

nodes or on random basis which is more preferred

approach. If the master node takes more time to generate

works, the worker nodes can work in phases so that the

next phase may start after the completion of previous

phase [15, 19, 20].This model resembles to the

hierarchical model in which the root nodes acts as master

nodes and the leaf nodes acts as slave nodes. Both shared-

address-space and message-passing paradigms are suitable

for this model [15, 19, 20].

A large number of communications over heads

generated at the master node may crash the whole system

[15, 19, 20].Thus it is necessary to choose such granularity

of tasks so that the system may have more dominance on

computation rather than communication.

5.5 The Pipeline or Producer-Consumer Model

In this model, the data is passed through pipeline which

has several stages and each stage (process) does some

work on the data and passed to the next stage. This

concurrent execution on a data stream by different

programs is called stream parallelism[15, 19, 20, 21]. The

pipelines may be in the form of linear or multidimensional

arrays, trees or general graphs. A pipeline is a chain of

producers and consumers because in this model each

process generates result for next process. In general, static

mapping is used in this model.

 The larger granularity may take longer time to fill up

the pipeline and the first process may take longer time to

pass the data to the next step so the next process may have

to wait longer and too fine granularity may cause more

over heads so this model uses overlapping interaction with

computation to reduce the overheads [11].

5.6 Hybrid Models

Sometimes, one or two models are combined to form

hybrid model shown in Fig. 2 to solve the current problem

in hand [11]. Many times, an algorithm design may need

features of more than one algorithm model. For example,

pipeline model is combined with a task dependency graph

in which data passed through the pipeline model lead by

the dependency graph [15, 19, 20].

Figure 2 hybrid model

6. Advantages of Distributed Computing
Followings are the main advantages of distributed

computing:

6.1 Inherently Distributed Computations

The applications which are distributed over the globe

like money transfer in banking, reservations in flight

journey which involves consensus among parties are

inherently distributed in nature [10, 11, 15].

6.2 Resource Sharing

As the replication of resources at all the sites is neither

cost-effective nor practical for performance improvement,

the resources are distributed across the system. It is also

impractical to place all the resources at a single site as it

can degrade significant performance [10, 11, 15].For quick

access as well as higher reliability distributed database like

DB2 partition the data sets across a number of servers

along with replication at a few sites [15].

6.3 Access to Geographically Remote Data and

Resources

In many instances data cannot be replicated at each site

due to its heavy size and it also may be risky to keep the

vital data in each site [10, 11, 15]. For example, banking

system’s data cannot be replicated everywhere due to its
sensitivity. So it is rather stored in central server which

can be accessed by the branch offices through remote log

in. Advances in mobile communication through which the

central server can be accessed which needs distributed

protocols and middleware [15].

Int. J. Advanced Networking and Applications

Volume: 07 Issue: 01 Pages: 2630-2635 (2015) ISSN: 0975-0290

2634

6.4 Enhanced Reliability

Enhanced reliability is provided by the distributed

system as it has inherent potential by replicating resources

[10, 11, 15]. Further, in general the distributed resources

do not crash or malfunction. Reliability involves several

points:

6.4.1 Availability

The resources are always available and can be accessed

any time.

6.4.2 Integrity

The resources or the data should always be in correct

state as the data or resources are accessed concurrently by

multiple processors.

6.4.3 Fault-Tolerance

Distributed system is fully fault tolerant because it

works properly even some of its resources stop to work

[11, 22].

6.5 Increased Performance/Cost Ratio
The performance/cost ratio is improved by resource

sharing and accessing geographically remote data and

resources [10, 11, 15].In fact, any job can be partitioned

and can be distributed over numbers of computer in a

distributed system rather than to allocate whole job to the

parallel machines.

6.6 Scalability
More numbers of nodes may be connected to the wide-

area network which does not directly affect in

communication performance [10, 11, 15].

6.7 Modularity and Incremental Expandability

Heterogeneous processors running the same middleware

algorithm may be simply included into the system without

altering the performance and the existing nodes can be

easily replaced by other nodes [10, 11, 15].

7. Scope of Distributed Computing
Distributed computing has changed the scenario of

computation. Distributed computing is involved in almost

every field of computation. The cost benefit analysis of

distributed computing is always higher than the other

dedicated computing [11]. Distributed computing is being

highly applied in the fields such as engineering and

design, scientific applications, commercial applications

and applications in computer systems.

 Distributing computing is widely being used to design

applications like airfoils, internal combustion engines

,high-speed circuits, micro-electromechanical and nano-

electromechanical systems in engineering and design.

These types of applications need mainly optimization.

Algorithms like Genetic programming for discrete

optimization Branch-and-bound, Simplex, Interior Point

Method for linear optimization which are being mostly

used in optimization are parallelized and computed by

distributed computing [10, 11, 15].

 High performance computing is being highly used in

scientific applications like sequencing of the human

genome, examining biological sequences to develop new

medicines and treatments for diseases, analyzing

extremely large dataset in bioinformatics and astrophysics,

understanding quantum phenomena and macromolecular

structures in computational physics and chemistry [10, 11,

15].

 Distributed computing is extensively being used in

commercial applications. As the applications frequently

used web and database servers, it is indispensible to make

optimization for queering and taking quick decisions for

better business processes. The huge volume of data and

geographically distributed nature of this data need the use

of effective parallel and distributed algorithms for the

issues like classification, time-series analysis, association

rule mining and clustering [10, 11, 15].

 Since the computer systems become widespread in

every field of computer science applications itself, the

parallel distributed computing embedded in a diverse field

of computer applications like computer security analysis,

network intrusion detection, cryptography analysis,

computations in ad-hoc mobile etc. [15].

8. Conclusion
This paper focuses on distributed computing. In this

paper we studied the difference between parallel and

distributed computing, terminologies used in distributed

computing, task allocation in distributed computing and

performance parameters in distributed computing system,

parallel distributed algorithm models and advantages of

distributed computing and scope of distributed computing.

References

[1] A Chhabra, G Singh, S S Waraich, B Sidhu and G

Kumar, Qualitative Parametric Comparison of Load

Balancing Algorithms in parallel and Distributed

Computing Environment, Word Academy of

Science, Engineering and Technology, 2006, 39-42.

[2] D Z Gu, L Yang and L R Welch, A Predictive,

Decentralized Load Balancing Approach, in:

Proceedings of the 19th IEEE International Parallel

and Distributed Processing Symposium, Denver,

Colorado, April 2005, 04-08.

[3] M F Ali and R Z Khan, The Study on Load

Balancing Strategies in Distributed Computing

System, International Journal of Computer Science &

Engineering Survey (IJCSES) Vol.3, No.2, April

2012.

[4] R Z Khan and M F Ali, An Efficient Diffusion Load

Balancing Algorithm in Distributed System, I.J.

Information Technology and Computer Science, Vol.

08, July 2014, 65-71.

[5] R Z Khan and M F Ali, An Efficient Local

Hierarchical Load Balancing Algorithm (ELHLBA)

in Distributed Computing, IJCSET, Vol 3, Issue 11, ,

November, 2013, 427-430.

Int. J. Advanced Networking and Applications

Volume: 07 Issue: 01 Pages: 2630-2635 (2015) ISSN: 0975-0290

2635

[6] R Z Khan and M F Ali, An Improved Local

Hierarchical Load Balancing Algorithm (ILHLBA)

in Distributed Computing, International Journal of

Advance Research in Science and Engineering

(IJARSE), Vol. No.2, Issue No.11, November, 2013.

[7] M F Ali and R Z Khan, A New Distributed Load

Balancing Algorithm, International Journal on

Recent and Innovation Trends in Computing and

Communication (IJRITCC), vol: 2, Issue: 9,

September 2014, 2556 – 2559.

[8] D L Eager, E D Lazowska and J Zahorjan, A

Comparison of Receiver Initiated and Sender

Initiated Adaptive Load Sharing, Performance

Evaluation, Vol. 6, 1986, 53-68.

[9] S P Dandamudi and K C M Lo, Hierarchical Load

Sharing Policies for Distributed Systems, Technical

Report TR- 96-22, Proc. Int. Conf. Parallel and

Distributed Computing Systems, 1996.

[10] A D Kshemkalyani and M. Singhal, Distributed

Computing: Principles, Algorithms and Systems,

Cambridge University Press, 2008.

[11] B Barney, Introduction to Parallel Computing,

Retrieved from Lawrence Livermore National

Laboratory: http://computing

.IInl.govt/utorials/parallel comp/,2010.

[12] www.cs.uic.edu/~ajayk/chapter1.pdf

[13] M Nelson, Distributed Systems Topologies: Part 1,

http://openp2p.com, 2001.

[14] I Ahmad, A Gafoor and G C Fox, Hierarchical

Scheduling of Dynamic Parallel Computations on

Hypercube Multicomputers, Journal of Parallel and

Distributed Computing, 20, 19943, 17-329.

[15] A Grama, A Gupta, G Karypis and V Kumar,

Introduction to Parallel Computing, Publisher:

Addison Wesley, uJanuary 2003.

[16] K Cristoph and K Jorg, Modles for Paralel

Computing: Review and Perspectives, PARS-

Miteilungen 24, Dec. 2007, 13-29.

[17] P J Hatcher and M J Quinn, Data-Parallel

Programming on MIMD Computers, MIT Press,

Cambridge, MA, 1991.

[18] W D Hillis and G Steele, Data Parallel Algorithms,

Communications of the ACM, Vol. 29, 1986.

[19] A Clamatis and A Corana, Performance Analysis of

Task based Algorithms on Heterogeneous systems

with message passing, In Proceedings Recent

Advances in Parallel Virtual Machine and Message

Passing Interface, 5th European PVM/MPI User’s
Group Meeting, Sept 1998.

[20] D Gelernter, M R Jourdenais and Kaminsky, Piranha

Scheduling: Strategies and Their Implementation,

International Journal of Parallel Programming, Feb

1995, 23(1): 5-33.

[21] S H Bokhari, Partitioning Problems in Parallel,

Pipelined, and Distributed Computing, IEEE

Transactions on Computers, January 1988, 37:8-57.

[22] www.cse.iitk.ac.in/report-repository, 2004.

Dr. Rafiqul Zaman Khan:

Dr. Rafiqul Zaman Khan

is presently working as an

Associate Professor in the

Department of Computer

Science in Aligarh Muslim

University (A.M.U),

Aligarh, India. He

received his B.Sc. Degree

from M.J.P Rohilkhand University, Bareilly, M.Sc and

M.C.A from A.M.U. and PhD (Computer Science) from

Jamia Hamdard University, New Delhi, India. He has 19

years of Teaching Experience of various reputed

International and National Universities viz King Fahad

University of Petroleum & Minerals (KFUPM), K.S.A,

Ittihad University, U.A.E, Pune University, Jamia

Hamdard University and AMU, Aligarh. He worked as a

Head of the Department of Computer Science at Poona

College, University of Pune. He also worked as a

Chairman of the Department of Computer Science, AMU,

Aligarh. His Research Interest includes Parallel &

Distributed Computing, Gesture Recognition, Expert

Systems and Artificial Intelligence.

Mr. Md Firoj Ali: Mr.

Md Firoj Ali is presently

working as an Assistant

Engineer in WBSEDCL,

India. He received his

B.Sc. and MCA Degree

from A.M.U. He has

been awarded Senior

Research Fellowship by

UGC, India and also

cleared National Eligibility Test conducted by UGC, 2012

and State Eligibility Test conducted by WBCSC, 2013.

His Research Interest includes Load balancing in

Distributed Computing System. He has published eleven

research papers in International Journals/Conferences in

the field of parallel and distributed computing.

